272 research outputs found

    Population structures and levels of connectivity for Scyphozoan and Cubozoan jellyfish

    Get PDF
    Understanding the hierarchy of populations from the scale of metapopulations to mesopopulations and member local populations is fundamental to understanding the population dynamics of any species. Jellyfish by definition are planktonic and it would be assumed that connectivity would be high among local populations, and that populations would minimally vary in both ecological and genetic clade-level differences over broad spatial scales (i.e., hundreds to thousands of km). Although data exists on the connectivity of scyphozoan jellyfish, there are few data on cubozoans. Cubozoans are capable swimmers and have more complex and sophisticated visual abilities than scyphozoans. We predict, therefore, that cubozoans have the potential to have finer spatial scale differences in population structure than their relatives, the scyphozoans. Here we review the data available on the population structures of scyphozoans and what is known about cubozoans. The evidence from realized connectivity and estimates of potential connectivity for scyphozoans indicates the following. Some jellyfish taxa have a large metapopulation and very large stocks (>1000 s of km), while others have clade-level differences on the scale of tens of km. Data on distributions, genetics of medusa and polyps, statolith shape, elemental chemistry of statoliths and biophysical modelling of connectivity suggest that some of the ~50 species of cubozoans have populations of surprisingly small spatial scales and low levels of connectivity. Despite their classification as plankton, therefore, some scyphozoans and cubozoans have stocks of small spatial scales. Causal factors that influence the population structure in many taxa include the distribution of polyps, behavior of medusa, local geomorphology and hydrodynamics. Finally, the resolution of patterns of connectivity and population structures will be greatest when multiple methods are used

    Genetic Detection and a Method to Study the Ecology of Deadly Cubozoan Jellyfish

    Get PDF
    Cubozoan jellyfish pose a risk of envenomation to humans and a threat to many businesses, yet crucial gaps exist in determining threats to stakeholders and understanding their ecology. Environmental DNA (eDNA) provides a cost-effective method for detection that is less labour intensive and provides a higher probability of detection. The objective of this study was to develop, optimise and trial the use of eDNA to detect the Australian box jellyfish, Chironex fleckeri. This species was the focus of this study as it is known to have the strongest venom of any cubozoan; it is responsible for more than 200 recorded deaths in the Indo-Pacific region. Further, its ecology is poorly known. Herein, a specific and sensitive probe-based assay, multiplexed with an endogenous control assay, was developed, and successfully utilised to detect the deadly jellyfish species and differentiate them from closely related taxa. A rapid eDNA decay rate of greater than 99% within 27 h was found with no detectable influence from temperature. The robustness of the technique indicates that it will be of high utility for detection and to address knowledge gaps in the ecology of C. fleckeri; further, it has broad applicability to other types of zooplankton

    Feasibility of isotope harvesting at a projectile fragmentation facility: ⁶⁷Cu

    Get PDF
    The work presented here describes a proof-of-principle experiment for the chemical extraction of (67)Cu from an aqueous beam stop at the National Superconducting Cyclotron Laboratory (NSCL). A 76 MeV/A (67)Cu beam was stopped in water, successfully isolated from the aqueous solution through a series of chemical separations involving a chelating disk and anion exchange chromatography, then bound to NOTA-conjugated Herceptin antibodies, and the bound activity was validated using instant thin-layer chromatography (ITLC). The chemical extraction efficiency was found to be 88 ± 3% and the radiochemical yield was ≄95%. These results show that extraction of radioisotopes from an aqueous projectile-fragment beam dump is a feasible method for obtaining radiochemically pure isotopes

    Time-of-flight mass measurements of neutron-rich chromium isotopes up to N = 40 and implications for the accreted neutron star crust

    Full text link
    We present the mass excesses of 59-64Cr, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of 64Cr is determined for the first time, with an atomic mass excess of -33.48(44) MeV. We find a significantly different two-neutron separation energy S2n trend for neutron-rich isotopes of chromium, removing the previously observed enhancement in binding at N=38. Additionally, we extend the S2n trend for chromium to N=40, revealing behavior consistent with the previously identified island of inversion in this region. We compare our results to state-of-the-art shell-model calculations performed with a modified Lenzi-Nowacki-Poves-Sieja interaction in the fp shell, including the g9/2 and d5/2 orbits for the neutron valence space. We employ our result for the mass of 64Cr in accreted neutron star crust network calculations and find a reduction in the strength and depth of electron-capture heating from the A=64 isobaric chain, resulting in a cooler than expected accreted neutron star crust. This reduced heating is found to be due to the >1-MeV reduction in binding for 64Cr with respect to values from commonly used global mass models.Comment: Accepted to Physical Review

    Computer simulation as a component of catheter-based training

    Get PDF
    IntroductionComputer simulation has been used in a variety of training programs, ranging from airline piloting to general surgery. In this study we evaluate the use of simulation to train novice and advanced interventionalists in catheter-based techniques.MethodsTwenty-one physicians underwent evaluation in a simulator training program that involved placement of a carotid stent. Five participants were highly experienced in catheter-based techniques (>300 percutaneous cases), including carotid angioplasty and stenting (CAS); the remaining 16 participants were interventional novices (<5 percutaneous cases). The Procedicus VIST simulator, composed of real-time vascular imaging simulation software and a tactile interface coupled to angiographic catheters and guide wires, was used. After didactic instruction regarding CAS and use of the simulator, each participant performed a simulated CAS procedure. The participant's performance was supervised and evaluated by an expert interventionalist on the basis of 50 specific procedural steps with a maximal score of 100. Specific techniques of guide wire and catheter manipulation were subjectively assessed on a scale of 0 to 5 points based on ability. After evaluation of the initial simulated CAS procedure, each participant received a minimum of 2 hours of individualized training by the expert interventionalist, with the VIST simulator. Each participant then performed a second simulated CAS procedure, which was graded with the same scale. After completion, participants assessed the training program and its utility via survey questionnaire.ResultsThe average simulated score for novice participants after the training program improved significantly from 17.8 ± 15.6 to 69.8 ± 9.8 (P < .01), time to complete simulation decreased from 44 ± 10 minutes to 30 ± 8 minutes (P < .01), and fluoroscopy time decreased from 31 ± 7 minutes to 23 ± 7 minutes (P < .01). No statistically significant difference in score, total time, or fluoroscopy time was noted for experienced interventionalists. Improvement was noted in guide wire and catheter manipulation skills in novices.. Analysis of survey data from experienced interventionalists indicated that the simulated clinical scenarios were realistic and that the simulator could be a valuable tool if clinical and tactile feedback were improved. Novices also thought the simulated training was a valuable experience, and desired further training time.ConclusionsAn endovascular training program using the Procedicus VIST haptic simulator resulted in significant improvement in trainee facility with catheter-based techniques in a simulated clinical setting. Novice participants derived the greatest benefit from simulator training in a mentored program, whereas experienced interventionalists did not seem to derive significant benefit

    Continuous-mode 448 kHz capacitive resistive monopolar radiofrequency induces greater deep blood flow changes compared to pulsed mode shortwave: a crossover study in healthy adults

    Get PDF
    This document is the Accepted Manuscript version of the following article: Binoy Kumaran, Anthony Herbland and Tim Watson, ‘Continuous-mode 448 kHz capacitive resistive monopolar radiofrequency induces greater deep blood flow changes compared to pulsed mode shortwave: a crossover study in healthy adults’, European Journal of Physiotheraphy, first published online 20 April 2017. The version of record is available online at doi: http://dx.doi.org/10.1080/21679169.2017.1316310. © 2017 Informa UK Limited, trading as Taylor & Francis Group.Aims: Radiofrequency-based electrophysical agents (EPAs) have been used in therapy practice over several decades (e.g. shortwave therapies). Currently, there is insufficient evidence supporting such EPAs operating below shortwave frequencies. This laboratory-based study investigated the deep physiological effects of 448 kHz capacitive resistive monopolar radiofrequency (CRMRF) and compared them to pulsed shortwave therapy (PSWT). Methods: In a randomized crossover study, 17 healthy volunteers initially received four treatment conditions: high, low and placebo dose conditions receiving 15-min CRMRF treatment and a control condition receiving no intervention. Fifteen participants additionally received high-dose PSWT as fifth condition, for comparison. Pre- and post-treatment measurements of deep blood flow and tissue extensibility were obtained using Doppler ultrasound and sonoelastography. Group data were compared using analysis of variance model. Statistical significance was set at p ≀ .05, 0.8 power, and 95% confidence interval. Results: Significant increases in volume and intensity of deep blood flow were obtained with CRMRF over placebo, control (p = .003) and PSWT (p < .001). No significant changes in blood flow velocity or tissue extensibility were noted for any condition. Conclusions: Deep blood flow changes with CRMRF were more pronounced than that with PSWT, placebo or control. Potential greater therapeutic benefits need to be confirmed with comparative clinical studies.Peer reviewe

    A panchromatic study of BLAST counterparts: total star-formation rate, morphology, AGN fraction and stellar mass

    Full text link
    We carry out a multi-wavelength study of individual galaxies detected by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) and identified at other wavelengths, using data spanning the radio to the ultraviolet (UV). We develop a Monte Carlo method to account for flux boosting, source blending, and correlations among bands, which we use to derive deboosted far-infrared (FIR) luminosities for our sample. We estimate total star-formation rates for BLAST counterparts with z < 0.9 by combining their FIR and UV luminosities. Star formation is heavily obscured at L_FIR > 10^11 L_sun, z > 0.5, but the contribution from unobscured starlight cannot be neglected at L_FIR < 10^11 L_sun, z < 0.25. We assess that about 20% of the galaxies in our sample show indication of a type-1 active galactic nucleus (AGN), but their submillimeter emission is mainly due to star formation in the host galaxy. We compute stellar masses for a subset of 92 BLAST counterparts; these are relatively massive objects, with a median mass of ~10^11 M_sun, which seem to link the 24um and SCUBA populations, in terms of both stellar mass and star-formation activity. The bulk of the BLAST counterparts at z<1 appear to be run-of-the-mill star-forming galaxies, typically spiral in shape, with intermediate stellar masses and practically constant specific star-formation rates. On the other hand, the high-z tail of the BLAST counterparts significantly overlaps with the SCUBA population, in terms of both star-formation rates and stellar masses, with observed trends of specific star-formation rate that support strong evolution and downsizing.Comment: Accepted for publication in the Astrophysical Journal. 44 pages, 11 figures. The SED template for the derivation of L_FIR has changed (added new figure) and the discussion on the stellar masses has been improved. The complete set of full-color postage-stamps can be found at http://blastexperiment.info/results_images/moncelsi
    • 

    corecore